
Acta Graphica Vol 28, No2 (2017) ; 55-58 55

Original scientific paper Skala T. et al.

Abstract
As both hardware and software have become increasingly available and constantly developed, they globally
contribute to improvements in technology in every field of technology and arts. Digital tools for creation and
processing of graphical contents are very developed and they have been designed to shorten the time required
for content creation, which is, in this case, animation. Since contemporary animation has experienced a surge in
various visual styles and visualization methods, programming is built-in in everything that is currently in use.
There is no doubt that there is a variety of algorithms and software which are the brain and the moving force
behind any idea created for a specific purpose and applicability in society. Art and technology combined make a
direct and oriented medium for publishing and marketing in every industry, including those which are not nec-
essarily closely related to those that rely heavily on visual aspect of work. Additionally, quality and consistency
of an algorithm will also depend on proper integration into the system that will be powered by that algorithm
as well as on the way the algorithm is designed. Development of an endless algorithm and its effective use will
be shown during the use of the computer game. In order to present the effect of various parameters, in the final
phase of the computer game development an endless algorithm was tested with varying number of key input
parameters (achieved time, score reached, pace of the game).
Keywords: object-oriented programming, computer game, endless algorithm

Tibor Skala1, Vladimir Cviljušac1, Kristijan Mustač1

1University of Zagreb, Faculty of Graphic Arts, Getaldićeva 2, Zagreb, Croatia
E-mail: tibor.skala@grf.hr, vladimir1.cviljusac@grf.hr, kristijan.mustac@gmail.com

1. Introduction
Developing of an endless algorithm was de-
vised and tested through its implementation
in a computer game. Adobe Flash Builder
software was used, as it was designed as a soft-
ware used to compress ideas from concept into
working, i.e. programming part. A satisfactory
ratio of gameplay was achieved by testing and
subsequent balancing of various parameters.

2. Flash Builder
Adobe Flash Builder is an integrated develop-
ment environment (IDE) for development of
cross-platforms, rich Internet applications for
desktop computers and a growing number of
mobile devices [1]. Development environment
of Flash Builder features testing and debugging
functionalities as well as profiling tools, which
contribute to enhanced and effective produc-
tion.

Figure 1. Flash Builder GUI

Flash Builder is developed in Eclipse (open
source IDE). It is a full-featured package, con-
taining all the tools required for development
of applications that rely on open code, such as
Flex framework and ActionScript 3.0 language,
which are also used by this game based on end-
less algorithm.

Original scientific paper
DOI: proba

Skala T. et al.
Development of algorithm for con-
tinuous generation of a computer
game in terms of usability and optimi-
zation of developed code in comput-
er science

; 55-58

Tibor Skala, Vladimir Cviljušac, Kristijan Mustač

Development of algorithm for continuous genera-
tion of a computer game in terms of usability and op-
timization of developed code in computer science

56 Acta Graphica Vol 28, No 2 (2017) ; 55-58

Original scientific paper Skala T. et al.

Development of algorithm for continuous generation of a computer game in terms of usability and optimization of developed code in computer science

Figure 2 – in-game screen classes

An infinite loop was created in the game. As the
name suggests, the loop repeats one action re-
currently. The purpose of endless algorithm is to
achieve balance of the game according to the play-
er’s abilities and base parameters of the game [2].

Figure 3 – base parameters of the game

After a level has been completed, a new level
is run. The end results of the previously com-
pleted level are the input parameters of a new
level. Functions that are run when the player
has completed one game level are presented
in Figure 4. After a successful completion of a
level, the player proceeds to next level, carry-
ing the sum of lives and points accumulated at
the moment of completion of the previous one.
If the player fails to complete a level, she/he is
automatically demoted to the initial level with
the initial set of parameters, such as number of
lives and points (Figure 3).

Figure 4 – function executed at the moment of level
completion

The portion of the programme code that is em-
ployed to balance the game is in fact an infinite
loop and that is the core portion of the game
that makes the game interesting and endless.
The advantage of such an approach is that play-
er can play the game for as long as she/he wish-
es so as the algorithm is responsible to main-
tain the player’s interest at high level.

Figure 5 – functions used to store the player’s parameters

In order for the loop to be able to be run within
the video game, a code has been written and as-
signed to each screen (screens are presented on
Figure 2). It is the very core that forms the end-
less algorithm. Figure 6 depicts the flow of the
screens in an infinite loop. The initial screen is
shown. It is followed by a screen selected ac-
cording to a key pressed by the player.

Figure 6 – illustration of endless algorithm

On the initial screen (Figure 7), every graphic
object is initialized, background is cropped to
the screen size and the base game parameters
are set (points, lives etc.). The figure also shows
the functions that produce the parameters as-
sociated with the player, based on the success
or failure in the previously played level.

Acta Graphica Vol 28, No2 (2017) ; 55-58 57

Original scientific paper Skala T. et al.

Development of algorithm for continuous generation of a computer game in terms of usability and optimization of developed code in computer science

Figure 7 – code listing of the initial screen

To each screen (Figure 2) within the game certain
syntax, i.e. defining code, has been assigned [3].
There is a specific piece of code and certain set-
tings associated with each screen. The structure
of the settings defined in the code can be shown
through simplifying the game architecture.
“// go to the main menu screen
// press start button to initiate the game elements

(player, score, time, lives, enemies etc.)
// when you start you have a default save state

(0 points - 3 lives – default timer = 1 min)
// when you reach the end of the level with a

certain sum of points (your score) and lives
you given a choice:

 a) go to the next level with current lives and
points

 b) restart the level and start from 0 points
and 3 lives

 c) go to the main menu
// if you don’t reach the end of the level (you

lose the last life) you have a choice:
 b) restart the level and start from 0 points

and 3 lives
 c) go to the main menu”
However, there is one setting introduced to
produce the mentioned endless algorithm.
Code listing presented on the Figure 8 is used
for specific navigation between the screens (us-
er’s instructions determine the navigation di-
rectly). The part of the code where the endless
algorithm is achieved lies in there and a sim-
plified game architecture is shown in the figure
below (Figure 9) [4].

Figure 8 – code listing of the screen navigation section

The section of the code for screen navigation is
placed in the “MainContainer” class (Figure 10).

Figure 9 – simplified game architecture

As its name suggests, it acts as a main contain-
er for the functions on which the algorithm
relies [5], [6]. Also, managing the parameters
from one central point is much more useful for
achieving the desired effect than using more
functions placed in more sections for the same
operation [7], [8], [9]. A unique identification
code is assigned to each screen. It is used by the
“switch” logical function to change the identifi-
cation code of the used screen at that particular
moment [10]. The change of the code also af-
fects the theme of the used screen (main menu,
splash screen, pause etc.).

Figure 10 – flow diagram of a computer game

58 Acta Graphica Vol 28, No 2 (2017) ; 55-58

Original scientific paper Skala T. et al.

Development of algorithm for continuous generation of a computer game in terms of usability and optimization of developed code in computer science

Depending on the user’s input, the course of
the game follows the flow diagram in Figure 10.
The part of the code highlighted in red rectan-
gle contains parts of the code listing responsi-
ble for navigation through all the screens except
the intro video. The main, i.e. central container
for the functions is within that rectangle.

3. Conclusion
The advantage of use of such algorithm is pri-
marily in more efficient use and optimization of
the used programme. In this particular case, it
is a computer game [11]. As the given examples
show, by employing such algorithm the player
can play the game for as long as he/she wishes
to, while the algorithm is responsible to keep the
player constantly interested in playing and does
so by recurring increases or decreases of the
game settings [12]. As it was already mentioned
above, the effect of the code in the main function
container is to ensure that each screen that pres-
ents a certain theme (main menu, pause, exit,
etc.) also records the user’s current results. The
results may later be either kept or reset [13], [14].
Also, managing the parameters from one central
point is much more convenient for achieving the
intended effect of cohesion and the feel of cen-
tral management as opposed to the method of
using more various functions for the same oper-
ation. It is precisely for that reason that this game
consumes less processing and graphic resources
and consequently it also ends faster.
In the computer games field of the computer
science it is imperative to provide entertainment
for the users and users require new challenges
in prolonged engagement in the game. There-
fore it is vital for the computer game to be able
to efficiently provide content that will maintain
high level of user’s enthusiasm for the game. This
can be achieved precisely by using such an algo-
rithm. Additionally, there is a number of other
fields in which it can also be put to use [15]. Such
algorithm can also be used to improve specific
segments in other types of applications. Uses in-
clude easier and more precise communication of
storage and upgrade of settings. The results may
later be either kept or reset.
An example of such non-specific use of these
kind of algorithm within an application could
be its use in infinite loop or running a pro-
gramme that would continuously record data

on passengers in traffic (time, station, ID of the
route, alternative routes and similar) [16].
This algorithm can certainly be widely used in
fields of technology awareness, but in this case
the main issue would be its capabilities of being
upgraded. With significantly increased number
of screens and available options for upgrades
within the same computer game, an import-
ant requirement would be to introduce a set of
parallel junction points within the code, which
would be able to simultaneously control the in-
creased number of screens and data storages.

4. Reference
1 ***http://www.adobe.com/products/flash-builder.

html
2 Mustač K. (2016), Razvoj algoritma za generiranje

beskonačne računalne igre s GPU
3 ***http://computer.howstuffworks.com/question717.

htm
4 ***http://whatis.techtarget.com/definition/algorithm
5 ***http://algs4.cs.princeton.edu/11model/
6 ***http://docbook.rasip.fer.hr/ddb/res/35/Ch4.html
7 ***https://www.khanacademy.org/computing/com-

puter-science/algorithms
8 ***http://study.com/academy/lesson/what-is-an-al-

gorithm-in-programming-definition-examples-anal-
ysis.html

9 ***http://adrianmejia.com/blog/2014/02/13/algo-
rithms-for-dummies-part-1-sorting/

10 Sanjay Madhav, Game Programming Algorithms and
Techniques: A Platform-Agnostic Approach, Addi-
son-Wesley Professional, 2014.

11 Jialin Liu, Olivier Teytaud,Tristan Cazenave, Fast
Seed-Learning Algorithms for Games, Computers
and Games: 9th International Conference, CG 2016,
Leiden, The Netherlands, Springer 2016 edition,
2017.

12 Saint-Pierre, D.L., Teytaud, O.: Nash and the bandit
approach for adversarial portfolios. In: CIG 2014 -
Computational Intelligence in Games, pp. 1–7. IEEE,
Dortmund, August 2014.

13 Gaudel, R., Hoock, J.B., Pérez, J., Sokolovska, N., Tey-
taud, O.: A principled method for exploiting opening
books. In: International Conference on Computers
and Games, pp. 136–144, Kanazawa, Japan, 2010.

14 Méhat, J., Cazenave, T.: A parallel general game play-
er. KI-Künstliche Intell. 25, 43–47, 2011.

15 Mohamed, T.P., Hruschka, E.R.J., Mitchell, T.M.: Dis-
covering relations between noun categories. In: Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 1447–1455, 2011.

16 Alena Kozlova, Joseph Alexander Brown and Elizabeth
Reading, 2015 IEEE Conference on Computational In-
telligence and Games, Examination of Representation-
al Expression in Maze Generation Algorithms.

