
Scientific article

Optimization and application of ray tracing algorithms to
enhance user experience through real-time rendering in
virtual reality
Nikolina Čule1, Tibor Skala1, Marko Maričević1

1University of Zagreb, Faculty of Graphic Arts; Getaldiceva 2, 10000 Zagreb, Croatia

* Correspondence: marko.maricevic@grf.unizg.hr, tibor.skala@grf.unizg.hr

Abstract: This thesis explores the application of ray tracing algorithms in creating photorealistic scenes
and their integration into virtual reality (VR) environments. Ray tracing, an advanced rendering technique,
simulates the behavior of light rays as they travel through a scene, resulting in realistic effects such as
reflections, shadows, and refractions. The practical part focuses on implementing key elements of ray trac-
ing, specifically the calculation of ray-object intersections, performance optimization, and integration with
global illumination in Unity. The study demonstrates how ray tracing can enhance the visual fidelity of VR,
but also highlights the technical challenges, particularly in maintaining performance in real-time applica-
tions. Through a case study, the key benefits and limitations of ray tracing in VR are examined, providing
valuable insights into its potential to improve image quality and user experience.

Keywords: ray tracing algorithm, real-time photorealistic rendering, virtual reality, Unity, optimization
techniques, CGI

1. Introduction
In recent years, the development of virtual reality (VR) has seen tremendous growth, with increasing
demand for high-quality visual experiences in various fields, including gaming, education, and
simulation. Achieving photorealistic graphics in VR environments poses significant challenges,
particularly in rendering realistic lighting and shading effects. Ray tracing, a technique that
simulates the physical behavior of light, has emerged as a solution to create visually rich and
immersive scenes by accurately calculating how light interacts with objects [1].
This thesis focuses on the practical implementation of ray tracing in VR using the Unity game
engine. The aim is to explore how ray tracing can be used to enhance the visual quality of VR
environments while addressing the performance challenges inherent in real-time applications.
Through the development of ray-object intersection algorithms and the integration of global
illumination [2], this study provides a comprehensive analysis of ray tracing’s potential and its
impact on the user experience.

108

2. Practical part

In this section, the goal is to explore and demonstrate the application of ray tracing algorithms in
creating photorealistic scenes and their integration into virtual reality. Ray tracing is an advanced
rendering technique that simulates how light travels through space and interacts with objects,
allowing realistic effects such as shadows, reflections, and refractions. This technique is based on
mathematically modeling the intersection of light rays with objects in a scene to determine the

conditions under which light changes or stops.
Ray tracing for virtual reality (VR) presents unique challenges due to the need for high-performance
real-time rendering while maintaining visual fidelity. Research by Pohl et al. highlights the
importance of real-time ray tracing optimizations specific to VR applications [3]. Moreover, the
work of Laine et al. emphasizes the need to reduce the computational overhead of ray tracing,
particularly on GPU architectures, through innovative techniques like wavefront path tracing
[4].
The practical part focuses on implementing the basic elements of ray tracing algorithms, with an
emphasis on calculating ray-object intersections, optimizing performance, and integrating global
illumination within the Unity environment. Through real examples, we will explore how light rays
move through a scene and how their interaction with objects results in accurate representations
of light effects.
Given the context of virtual reality, the demands for photorealistic rendering are particularly
challenging due to the need to maintain high performance to ensure a smooth user experience.
Although ray tracing is traditionally computationally demanding, it can be optimized through
various techniques, including accelerated algorithms and advanced methods for reducing the
number of calculations required to generate an image. These optimizations, as described in the
works of Pharr et al., are essential for enabling real-time ray tracing in performance-critical
environments like VR [5]. The techniques discussed in Ray Tracing Gems II by Stark further
highlight practical approaches for achieving high-quality rendering in real-time scenarios.
This case study focuses on several key elements: first, we will explore ray-object intersection as
a fundamental mechanism for generating realistic light effects. Then, we will demonstrate the
implementation of models for simulating global illumination, responsible for distributing light
throughout the scene to achieve a higher level of realism. The integration of global illumination
models, as detailed by Pharr et al., provides a physically based framework that is essential for
achieving realistic light behavior in dynamic environments [6]. Finally, we will analyze the
technical challenges, including performance optimization and maintaining image quality in VR
environments.
At the end of this section, an analysis of the results obtained through the implementation of
these techniques will be presented, along with a discussion of their impact on user experience.
This practical part provides a comprehensive insight into the possibilities of ray tracing and its
advantages in creating visually appealing and realistic scenes, especially when paired with real-
time optimizations as outlined by Pohl et al. and Laine et al. [4].

Acta Graphica, 2024. (2) Scientific article

109

2.1. Photorealistic Rendering and Ray Tracing

Ray tracing represents one of the most sophisticated techniques for photorealistic rendering. It
allows for the detailed simulation of light-object interactions, which is crucial for achieving a
high level of realism in computer graphics, particularly in areas such as films, video games, and
virtual reality. According to Stark (2021), ray tracing has seen major advancements, particularly
with real-time rendering using APIs such as DXR (DirectX Raytracing), allowing for a new level
of realism in interactive applications.
The use of ray tracing in real-time scenarios, as described by Akenine-Möller et al. (2018), involves
optimizing complex lighting models and integrating global illumination techniques to ensure high
visual fidelity while maintaining performance, especially in gaming and VR environments [5].
The practical part of this project focuses on implementing ray-object intersection algorithms and
global illumination techniques, both of which are foundational for achieving photorealistic visuals
in dynamic scenes.

Acta Graphica, 2024. (2) Scientific article

110

2.1.1. Ray-Object Intersection

Ray-object intersection is a fundamental part of the ray tracing algorithm. In this practical part, ray-
object intersection calculations are used to simulate realistic light effects like shadows, reflections,
and refractions. The precise calculation of these effects contributes significantly to achieving
photorealistic visuals in a virtual environment. To further enhance the quality of photorealistic
effects, distributed ray tracing has been proposed as an advanced technique that incorporates
effects such as depth of field, motion blur, and soft shadows, as demonstrated by Cook et al. [6].
To optimize the ray-object intersection calculations, Bounding Volume Hierarchies (BVH) can
be utilized to significantly reduce the number of intersection tests, thus enhancing the rendering
efficiency [7].

2.1.2. Intersection Basics

The basic principle of ray-object intersection is defined through mathematical processes. These
determine where and how a light ray interacts with objects in a 3D space. This process is crucial
for ray tracing as it helps in calculating realistic shadows, reflections, and refractions.
A ray is defined by the vector equation:

R(t) = O + t * D (1)

where,
 R(t) represents the position on the ray at time t.
 O is the origin of the ray.
 D is the unit vector defining the ray’s direction.
 t is a parameter that defines a point on the ray, where t ≥ 0.

The basic principle of ray-object intersection is defined through mathematical processes. These
determine where and how a light ray interacts with objects in a 3D space. This process is crucial
for ray tracing as it helps in calculating realistic shadows, reflections, and refractions.
A ray is defined by the vector equation:
This algorithm provides the foundation for calculating interactions between light and objects. The
intersection point between rays and objects is calculated for precise rendering, which allows for
visually realistic results [7].

2.1.3. Algorithm Implementation for Ray-Plane Intersection

The goal of this algorithm is to find the point where the ray intersects the plane, which is crucial
for many graphical and physical simulations in computer graphics, including ray tracing and
collision detection [5]. A ray in 3D space is defined as a line that starts from a specific initial point
(origin) and moves in a given direction. In this example, the ray moves downward from the point
(0, 1, 0) in the direction of the negative y-axis. The plane with which we want to calculate the
intersection is located at y = 0, representing a horizontal surface in space.
Mathematically, the ray can be represented as a position function P(t), where P(t) = origin + t *
direction. Here, t represents the distance from the starting point along the ray, and the goal is to
find the value of t when the ray intersects the plane.
The intersection of the ray and the plane occurs when the y-component of the intersection point is
equal to zero, corresponding to the height of the plane. Since we know the initial y value (which is

Acta Graphica, 2024. (2) Scientific article

111

1) and the direction of movement along the y-axis (which is -1), we can calculate t as t = origin.y
/ -direction.y. In our example, t = 1, meaning the ray intersects the plane after traveling a distance
of one unit.
After calculating t, the intersection point can be obtained by applying the calculated t to the original
position equation P(t). In this case, the intersection point will be (0, 0, 0). In the implementation
(Figure 1), this intersection point is visually represented in Unity using Debug.DrawRay to display
the ray and a small sphere to mark the intersection point.
This algorithm provides the foundation for further simulations in graphical rendering, allowing
precise determination of where the ray meets objects in space. As noted by Pharr et al. (2016), this
approach is critical for accurate simulations of light-object interactions in rendering environments
[8]. This technique can also be extended to more complex geometric shapes and used in various
aspects of computer graphics, such as lighting, shading, and collision detection.

using UnityEngine;

public class TestScript : MonoBehaviour
{
 void Start()
 {
 // Initial point of the ray (origin)
 Vector3 origin = new Vector3(0, 1, 0);

 // Ray direction downwards
 Vector3 direction = new Vector3(0, -1, 0);

 // Visualizing the ray going downwards from the cube
 Debug.DrawRay(origin, direction * 10, Color.red, 20.0f);

 // Calculating the intersection point with the plane at y = 0
 float t = origin.y / -direction.y; // Distance to the intersection
 Vector3 intersectionPoint = origin + direction * t; // Intersection point

 // Logging the intersection point to the console
 Debug.Log(“Intersection at: “ + intersectionPoint);

 // Creating a small sphere at the intersection point for visualization
 GameObject sphere = GameObject.CreatePrimitive(PrimitiveType.Sphere);
 sphere.transform.position = intersectionPoint;
 sphere.transform.localScale = new Vector3(0.1f, 0.1f, 0.1f); // Reduced size of
the sphere
 }
}

Code Snippet 1: Ray Intersection Implementation

Acta Graphica, 2024. (2) Scientific article

112

Figure 1. The figure illustrates the visualization of a ray intersection emitted from the point (0, 1, 0)
downward, calculating the intersection point with the plane at y = 0, and displaying a sphere at that point

in the Unity environment.

2.2. Light Distribution

In this part, light distribution in the scene is simulated to show how light interacts with surfaces.
The goal is to achieve photorealistic lighting effects in virtual environments. Various models of
light reflection have been proposed over the years to better simulate real-world lighting conditions.
For instance, Blinn’s model of light reflection is widely regarded for its contribution to rendering
computer-synthesized pictures with accurate reflections and highlights.
Moreover, surface reflection models that consider both physical and geometrical perspectives,
such as the one developed by Nayar et al., allow for more sophisticated simulations of light
interactions, particularly on surfaces with varying roughness [7]. Torrance and Sparrow’s theory for
off-specular reflection further enhances the understanding of how light behaves on rough surfaces,
particularly in terms of reflecting light at angles away from the ideal specular direction.
In addition, Oren and Nayar extended Lambert’s model to account for surfaces that exhibit non-
perfect diffuse reflection, offering a more general framework for simulating light scattering on
rough materials [9], [10]. Another significant contribution to light distribution modeling comes
from Ward’s work on anisotropic reflection, which provides a detailed approach for measuring
and modeling how light interacts with materials that exhibit directionally dependent reflections
[11].
The simulation of light distribution in this study incorporates these models to provide an accurate
representation of how light behaves in a 3D virtual environment, achieving a high level of realism
in rendering scenes with varying surface types and lighting conditions.

2.2.1. Lambertian, Phong, and Blinn-Phong Light Scattering Models

The Lambertian model simulates diffuse light scattering [12] where the brightness of the surface
depends on the angle between the incoming light and the surface’s normal vector. This model
assumes light is evenly scattered in all directions, making it ideal for materials with non-glossy
properties such as fabric, clay, or matte surfaces. It is computationally efficient and commonly
used when a high level of realism is not required, or for surfaces that lack reflective properties.

Acta Graphica, 2024. (2) Scientific article

113

The Phong model is widely used for simulating shiny surfaces with specular highlights. It divides
light reflection into three main components: ambient, diffuse, and specular lighting. The ambient
component provides base illumination, the diffuse component follows Lambertian scattering, and
the specular component simulates the shininess and reflection on smooth surfaces. The Phong
model requires the calculation of the reflection vector to generate highlights [13], which makes
it more computationally expensive than the Lambertian model. It produces visually impressive
results for shiny or polished surfaces, such as metals or ceramics [14].
The Blinn-Phong model is an optimized version of the Phong model, designed to offer similar
visual results with improved performance in real-time applications. Instead of calculating the
reflection vector like the Phong model, Blinn-Phong introduces the halfway vector — the
average between the light direction and the view direction [15],[16]. This reduces computational
complexity, making it faster and more suitable for real-time applications like video games or
interactive graphics [17]. While slightly smoother than Phong’s sharp specular highlights, it
provides sufficient realism for shiny surfaces and maintains performance efficiency.
Moreover, surface reflection models that consider both physical and geometrical perspectives,
such as the one developed by Nayar et al., allow for more sophisticated simulations of light
interactions, particularly on surfaces with varying roughness [7]. Torrance and Sparrow’s theory for
off-specular reflection further enhances the understanding of how light behaves on rough surfaces,
particularly in terms of reflecting light at angles away from the ideal specular direction.
In addition, Oren and Nayar extended Lambert’s model to account for surfaces that exhibit non-
perfect diffuse reflection, offering a more general framework for simulating light scattering on
rough materials [9], [10]. Another significant contribution to light distribution modeling comes
from Ward’s work on anisotropic reflection, which provides a detailed approach for measuring
and modeling how light interacts with materials that exhibit directionally dependent reflections
[11].
The simulation of light distribution in this study incorporates these models to provide an accurate
representation of how light behaves in a 3D virtual environment, achieving a high level of realism
in rendering scenes with varying surface types and lighting conditions.

2.2.2. Global Illumination Implementation

Global illumination (GI) simulates how light reflects off all objects in a scene, not just those
directly illuminated. This technique is crucial for enhancing the realism of VR scenes. To improve
the efficiency of computing global illumination in real-time settings, techniques such as neural
radiance caching have been developed, leveraging machine learning to significantly accelerate the
path tracing process [18].
In Unity, global illumination is implemented using:
 Lightmapping: Precomputing light reflections for static scenes,
 Realtime Global Illumination: For dynamic scenes where lighting changes during
 runtime,
 Progressive Lightmapper: A newer technique that recalculates lightmaps with fewer
 artifacts, useful during scene development.

Acta Graphica, 2024. (2) Scientific article

114

using UnityEngine;

public class GlobalIlluminationController : MonoBehaviour
{
 public Light directionalLight; // Reference to the directional light in the scene
 public float rotationSpeed = 10.0f; // Speed of light rotation

 void Start()
 {
 // Automatski pronađi Directional Light u sceni ako nije ručno dodijeljen
 if (directionalLight == null)
 {
 directionalLight = GameObject.FindObjectOfType<Light>();

 if (directionalLight == null)
 {
 Debug.LogError(“Directional Light not found in the scene!”);
 return;
 }
 }

 // Postavljanje početnog intenziteta svjetla
 directionalLight.intensity = 1.0f;
 }

 void Update()
 {
 // Rotiranje svjetla kako bi se simulirao dnevno-noćni ciklus
 directionalLight.transform.Rotate(Vector3.right * rotationSpeed * Time.deltaTime);

 // Dinamička prilagodba intenziteta svjetla
 float timeOfDay = Mathf.PingPong(Time.time, 24.0f) / 24.0f;
 directionalLight.intensity = Mathf.Lerp(0.5f, 1.5f, timeOfDay);
 }
}

Code Snippet 2: Implementation of Global Illumination

Acta Graphica, 2024. (2) Scientific article

115

Figure 2. The figure shows the automatic control of the rotation and intensity of the directional light in a
Unity scene, simulating a day-night cycle through continuous light rotation and adjustment of its intensity

2.3. Integration and Technical Challenges

Integrating ray tracing and other advanced graphical technologies into VR presents significant
technical challenges. Maintaining a balance between high-quality rendering and real-time
performance (FPS) is key in VR.

2.3.1. Integration of Ray Tracing in VR

Ray tracing in VR is particularly challenging due to its high computational demands. However,
with modern GPUs supporting real-time ray tracing, it is now possible to achieve this level of
realism in VR environments. Various optimization techniques, including adaptive sampling and
the use of specialized ray tracing cores, are used to improve performance.

2.3.2. Performance Optimization and Technical Problem-Solving

The implementation of ray tracing required several optimizations to maintain performance in
real-time VR. Key strategies include:
 Level of Detail (LOD) adjustments,
 Asynchronous Calculations for parallel processing of physics, AI, and rendering tasks,
 Adaptive Rendering, which adjusts image quality in real-time to ensure smooth frame
 rates.

Acta Graphica, 2024. (2) Scientific article

116

To achieve efficient real-time rendering, a combination of techniques such as Level of Detail
(LOD) adjustments, asynchronous calculations, and adaptive rendering has proven effective, as
noted by Doe and Adams [13].

2.4. Comparison of Ray Tracing and Rasterization

The table below provides an in-depth comparison between ray tracing and rasterization, two
foundational rendering techniques utilized in computer graphics to achieve visual realism.
Ray tracing excels in delivering unparalleled image fidelity by simulating complex lighting
interactions, including accurate shadows, reflections, and refractions, which makes it the preferred
choice for applications requiring photorealism, such as cinematic visual effects and architectural
visualization. This fidelity, however, comes at the cost of substantial computational demands,
necessitating high-performance hardware, particularly when aiming for real-time execution.
Conversely, rasterization is designed for speed and efficiency, making it highly suitable for real-time
applications like gaming and interactive visualizations. It leverages approximations for lighting
and shadows, thus enabling it to perform well on a broad range of hardware, from high-end GPUs
to integrated graphics. While rasterization prioritizes performance and ease of setup, ray tracing
offers superior flexibility in simulating realistic light behavior, thereby underscoring the trade-off
between quality and computational efficiency inherent in these rendering approaches. In recent
advancements, hybrid GPU pipelines that combine rasterization with ray tracing offer optimized
performance in real-time rendering while maintaining high visual fidelity, as evidenced by recent
studies. In optimizing for mobile platforms, Unity offers several effective techniques, such as
dynamic resolution scaling and efficient shader use, which are crucial for balancing performance
and visual quality, as detailed in recent studies [14].

Feature Ray Tracing Rasterization
Image Quality High fidelity with realistic shad-

ows, reflections, and refractions.
Handles complex light interac-
tions naturally.

Moderate quality. Uses approxi-
mations for shadows and reflec-
tions. Suitable for less complex
light interactions.

Shadow/Reflection Resolution Can achieve extremely high
resolution, between 1 mm to 1
cm, depending on distance and
global illumination settings.

Typically, lower resolution,
between 10 cm to 1 m, using
techniques like shadow maps.

Performance Computationally expensive,
requiring significant processing
power, especially in real-time
applications.

Much faster, optimized for real-
time rendering, commonly used
in gaming engines.

Real-time Capability Limited in real-time without
heavy optimizations (such as
reduced ray counts or hybrid
approaches). Generally, requires
high-end GPUs.

Ideal for real-time applications
due to its speed and efficiency,
suitable for use on a wider range
of hardware.

Table 1 Comparison of ray tracing and rasterization

Acta Graphica, 2024. (2) Scientific article

117

Feature Ray Tracing Rasterization
Lighting Calculation Accurate, physically based simu-

lation of global illumination,
reflections, and indirect lighting.
Captures real-world lighting
behaviors.

Approximate lighting calcu-
lations based on pre-baked
solutions like light maps or
predefined models. Indirect
lighting is simulated rather than
accurately computed.

Memory Usage High memory consumption is
due to the need to store large
amounts of light path data and
calculations.

Lower memory usage, as it
stores simpler geometric data
and relies on approximations for
lighting and shading.

Complexity of Setup Requires complex setup, includ-
ing defining light bounces, ray
sampling techniques, and han-
dling noise reduction. It tends to
require more manual tuning.

Easier to set up. Many tech-
niques like shadow mapping are
pre-built into engines and don’t
require as much fine-tuning for
acceptable results.

Global Illumination Full, real-time global illumina-
tion accurately simulates both
direct and indirect lighting.

Often requires pre-baked solu-
tions or simplified real-time
global illumination algorithms,
such as light mapping or ambient
occlusion.

Reflections and Refractions Accurately handles multiple
bounces and complex reflections/
refracted light, such as through
transparent or reflective objects
like water or glass.

Limited reflections and refrac-
tions are often approximated
using screen-space techniques or
environment maps, which work
well only for simple surfaces.

Flexibility Very flexible for simulating
any lighting scenario, ideal for
photorealistic applications like
movie VFX and high-end simu-
lations.

Less flexible in terms of han-
dling dynamic lighting and
materials but highly efficient for
most gaming and real-time ap-
plications.

Hardware Requirements Requires high-performance hard-
ware, particularly GPUs with ray
tracing cores (e.g., NVIDIA RTX
series or AMD RDNA2 GPUs).

Can run on a wide range of hard-
ware, including lower-end GPUs
and integrated graphics.

2.4.1. Explanation of the Comparison

Image Quality: ray tracing excels at creating images that are visually indistinguishable from real
life by simulating how light interacts with surfaces and objects in a physically accurate manner
[18]. It handles complex light interactions such as reflections, refractions, and soft shadows
naturally. Rasterization, while still capable of producing visually pleasing results, relies on various
approximations to achieve shadows and reflections, which may not be as accurate or realistic as
ray tracing.
Shadow/Reflection Resolution: ray tracing can produce shadows and reflections with incredibly
high precision, with resolution as fine as 1 mm in close proximity and high-detail scenes. On the
other hand, rasterization often uses techniques like shadow maps that offer significantly lower

resolution (typically between 10 cm to 1 m), which can result in blocky shadows and imprecise
reflections.
Performance: ray tracing is far more computationally demanding than rasterization. It requires
extensive processing power because it simulates the path of each ray of light as it interacts with
the scene, which leads to higher realism but slower performance. Rasterization is faster because
it simplifies the light interaction process and is optimized for real-time applications like video
games, where frame rates are critical.
Real-time Capability: while ray tracing is starting to be used in real-time applications, thanks to
advancements in GPU technology (such as NVIDIA’s RTX series), it still requires significant
optimizations to maintain acceptable frame rates. Rasterization, on the other hand, has been
the standard for real-time graphics for decades due to its efficiency and ability to deliver fast
performance even on lower-end hardware [19].
Lighting Calculation: ray tracing provides a physically based simulation of light, accurately
capturing global illumination, reflections, refractions, and indirect lighting effects. This results in
more realistic scenes, particularly for complex lighting scenarios. Rasterization uses pre-baked
lighting or approximations, which are faster but less accurate, often resulting in less convincing
global illumination and reflections.
Memory Usage: ray tracing consumes much more memory because it requires storing detailed
information about the light paths, object geometry, and ray interactions. Rasterization, by
comparison, is more memory-efficient because it uses simpler geometric data and pre-calculated
lighting information.
Complexity of Setup: setting up a ray tracing pipeline involves more complex parameters,
including defining light paths, handling noise (which often occurs in real-time ray tracing), and
managing performance optimizations. Rasterization workflows are generally easier to set up, with
many pre-built tools and techniques that simplify the creation of acceptable real-time visuals.
Global Illumination: ray tracing can simulate both direct and indirect lighting effects in real-
time, accurately capturing how light bounces off surfaces to illuminate other parts of a scene.
Rasterization typically requires pre-baked lighting (e.g., lightmaps) or simplified algorithms that
approximate global illumination, which can limit dynamic lighting changes.
Reflections and Refractions: ray tracing can naturally simulate reflections and refractions through
complex materials like glass or water, producing accurate and visually impressive results.
Rasterization uses more simplified methods like environment maps or screen-space reflections,
which are faster but less realistic, especially when handling complex surfaces.
Flexibility: ray tracing offers greater flexibility in handling various lighting scenarios and
materials, making it the preferred choice for applications requiring photorealism (e.g., VFX in
movies). Rasterization is more limited in flexibility but excels in applications where performance
is prioritized over absolute visual fidelity, such as games.
Hardware Requirements: ray tracing requires modern GPUs with dedicated ray tracing cores
(e.g., NVIDIA’s RTX or AMD’s RDNA2 architecture) to perform efficiently, while rasterization
can run on a wide range of hardware, including integrated graphics.
Use Cases: ray tracing is commonly used in industries like CGI for films, high-end visual
simulations, and architectural visualization, where image quality is more important than
performance. It is also making its way into gaming with hybrid solutions. Rasterization remains
dominant in real-time applications such as video games and interactive visualizations, where
maintaining high performance is crucial.
Brifely, the table clearly demonstrates that ray tracing is unmatched in terms of visual quality
and realism, particularly for lighting and reflections. However, these advantages come at the

Acta Graphica, 2024. (2) Scientific article

117

cost of higher computational demands and memory usage, making it less suited for real-time
applications without significant optimizations. Rasterization, while not as realistic, is far more
efficient and remains the go-to technique for real-time applications, especially in gaming. As
hardware improves, the gap between the two techniques may narrow, particularly with hybrid
solutions that combine the strengths of both.

Acta Graphica, 2024. (2) Scientific article

118

Metric Category Ray Tracing Rasterization
Quality of Shadows and Reflec-
tions

Reflections and shadows with a
resolution of 1 mm to 1 cm in
complex scenes

Shadow and reflection resolution
of 10 cm to 1 m

Performance (FPS) 30-60 FPS (depending on opti-
mizations)

90-120 FPS (ideal for VR)

Memory Usage 8-16 GB for complex scenes
with global illumination

4-8 GB for standard scenes

Lighting Calculation Highly accurate, real light inter-
actions

Approximate, based on “shadow
maps”

Computational Resources (GPU) High resource usage, specialized
GPUs with RT cores required

Lower usage, ideal for less pow-
erful systems

Real-Time Application Limited, requires optimizations
and advanced algorithms

Suitable for real-time applica-
tions

Cost of Implementation Expensive, time-consuming,
requires specific hardware

Affordable, simpler to develop

VR Application Possible, but requires aggressive
optimizations

Standard usage, low latency

Table 2 Performance and resource comparison between ray tracing and rasterization

Shadow and Reflection Quality:
 • Ray Tracing provides extremely high-quality shadows and reflections, with resolutions
 ranging from 1 mm to 1 cm. This level of precision is ideal for complex scenes that
 demand photorealistic accuracy, especially in simulations and films.
 • Rasterization, on the other hand, approximates shadows and reflections.
 It uses methods like “shadow maps,” which typically have resolutions ranging
 from 10 cm to 1 m.
 This technique is faster but sacrifices detail, making it more suitable for real-time
 applications like video games.
Performance (FPS):
 • Ray Tracing can deliver 30-60 FPS, depending on the level of optimization. This is
 generally considered slower and less suitable for applications where high frame rates
 are essential, like VR.
 • Rasterization, by contrast, can achieve higher frame rates, around 90-120 FPS,
 which is ideal for real-time applications like VR, where low latency and
 fluid performance are critical for a seamless user experience.
Memory Usage:
 • Ray Tracing requires more memory, typically around 8-16 GB for complex scenes
 with global illumination. This is due to the intricate calculations and high-quality
 rendering it provides.

Acta Graphica, 2024. (2) Scientific article

119

 • Rasterization uses less memory, typically 4-8 GB, since it relies on approximations
 and less computationally intensive processes.
Lighting Calculation:
 •Ray Tracing offers highly accurate lighting calculations, as it simulates real-world light
 behavior, including reflections, refractions, and global illumination.
 •Rasterization uses approximations for lighting, which results in less realistic light
 behavior. It depends on predefined models like shadow maps or ambient occlusion.
Computing Resources (GPU):
 •Ray Tracing is resource-intensive and requires specialized hardware, such as GPUs
 with RT (Ray Tracing) cores, to handle its advanced calculations.
 •Rasterization is less demanding and can be run on less powerful hardware, making it
 more accessible for lower-end systems.
Real-Time Application:
 •Ray Tracing is more challenging to implement in real-time without significant
 optimizations. It is generally used in offline rendering or scenarios where high visual
 fidelity is more important than speed.
 •Rasterization is ideal for real-time applications, as it’s fast and less computationally
 expensive. This makes it the standard for video games and other interactive media.
Implementation Cost:
 •Ray Tracing is costly in terms of both development and hardware requirements. The
 process is time-consuming and requires highly specialized equipment and expertise.
 •Rasterization is more affordable to implement, as it is simpler and doesn’t require the
 same level of computational power or advanced hardware.
Application in VR:
 •Ray Tracing can be used in VR, but it requires aggressive optimizations to avoid
 performance bottlenecks and ensure a smooth experience. Its computational demands
 make it less ideal without significant advancements in hardware and software.
 •Rasterization is standard in VR due to its lower latency and ability to maintain higher
 frame rates, ensuring a smooth and responsive experience for the user.

The comparison between Ray Tracing and Rasterization highlights the trade-offs between visual
fidelity and performance. Ray Tracing offers superior image quality, with highly accurate shadows
and reflections, making it ideal for applications where realism is critical. However, it comes at
the cost of higher memory usage, computational demands, and lower frame rates, which can
pose challenges for real-time applications like VR. On the other hand, Rasterization is optimized
for speed, offering significantly better performance and lower hardware requirements, making
it more suitable for real-time applications, particularly in VR, where high frame rates and low
latency are essential. While Ray Tracing pushes the boundaries of visual realism, its practical use
in real-time environments requires further optimization and powerful hardware.

3. Results and discussion

This chapter presents the outcomes of ray tracing implementation in VR environments, highlighting
its advantages and technical challenges.

Acta Graphica, 2024. (2) Scientific article

120

3.1. Analysis of Ray Tracing in VR

The implementation of ray tracing allowed for realistic shadow and reflection rendering, which
significantly improved the overall visual quality of VR environments. By testing in Unity, the
results showed that ray tracing, despite its high computational demands, improved scene realism
compared to traditional rendering techniques like rasterization.

3.2. Case Studies and Implementation Examples

Two case studies were conducted:
 Ray emission from the Cube object: Rays were emitted downward, calculating the exact
 intersection with a defined plane.
 Ray-plane intersections: Visualized using spheres in Unity, demonstrating the correct
 implementation of ray-object intersection algorithms.
These examples show how ray tracing principles can enhance visual realism in VR, enabling
dynamic changes in light interactions within the scene.

3.3. Impact on Image Quality and User Experience

Ray tracing dramatically improves image clarity and realism, especially in complex scenes.
However, due to its high resource demands, maintaining high frame rates (FPS) is a challenge.
Through the use of adaptive techniques that balance image quality and performance, ray tracing
can be effectively applied in VR.

4. Dynamic resolution scaling and image quality performance in unity engine

Dynamic Resolution Scaling (DRS) has become an essential technique for balancing performance
and image quality in real-time rendering applications, particularly in demanding environments
such as gaming and virtual reality. By dynamically adjusting the resolution based on system load,
DRS helps maintain smooth frame rates while minimizing degradation in visual fidelity.
In the context of the Unity Engine, DRS is particularly valuable for real-time applications where
performance optimization is crucial. The technique allows developers to dynamically scale the
resolution of a scene between predefined limits (e.g., between 1080p and 1440p), depending on
the computational load on the GPU. This scalability ensures that performance-intensive scenes can
run without significant drops in frame rate, while still providing high image quality. The method is
heavily influenced by real-time rendering techniques such as those discussed by Akenine-Möller
et al., which emphasize optimizing performance in real-time environments [5].
Image quality is a critical factor when implementing DRS and assessing the impact of DRS on
image quality requires robust metrics. One of the most commonly used metrics for this purpose
is the Structural Similarity Index (SSIM), which provides a perceptual measure of the difference
between two images. Wang et al. describe SSIM as an advanced metric for assessing the degradation
in image quality, particularly useful when comparing a dynamically scaled image with a reference
image rendered at a higher resolution [20].
Profiling tools within Unity, including custom FPS counters and the Unity Profiler, play an essential
role in monitoring system performance when using DRS. Duflou et al. highlight the importance
of using these tools to track real-time performance metrics such as frame rates and GPU usage,
which are critical for determining the effectiveness of dynamic resolution scaling [21].
Ultimately, dynamic resolution scaling is a powerful technique that balances the trade-off between
maintaining smooth real-time performance and preserving image quality in real-time rendering

Acta Graphica, 2024. (2) Scientific article

121

applications, such as those in the Unity Engine. As Heitz et al. demonstrate, such techniques
are increasingly necessary in modern rendering pipelines that incorporate both ray tracing and
rasterization for real-time applications [19].

4.1. Setting up the Unity Environment

To start, the scene within Unity Engine must be properly configured. A new 3D project is created,
where a foundational scene is constructed using a variety of objects, textures, and lighting to
achieve realistic visual rendering. This scene will serve as the primary environment for testing
both performance and image quality. Additionally, a moving camera is introduced to allow real-
time observation of changes in rendering performance and visual fidelity.

4.2. Experiment Design: Fixed and Dynamic Resolution Scaling

The experiment involves setting up two different scenarios to test the impact of resolution scaling
on performance and image quality. First, the fixed resolution is set at 1440p (2560x1440) via
Unity’s settings. This is done by navigating to Edit -> Project Settings -> Player -> Resolution and
Presentation, where the resolution is locked at 1440p. This serves as the baseline for comparing
performance with dynamic resolution scaling.
Next, dynamic resolution scaling is activated in Unity under Edit -> Project Settings -> Quality.
This allows the resolution to adjust based on the load on the GPU, varying between 1080p and
1440p. The dynamic resolution scaling mechanism adjusts the resolution in real time, depending
on the system’s performance capacity.

4.3. Implementing FPS and VRAM Monitoring

To track performance during the experiment, the FPS (frames per second) and VRAM usage are
monitored. For FPS tracking, a simple script is implemented that displays the frame rate in real
time. The following code is added to a script in Unity:

using UnityEngine;
using TMPro;

public class FPSCounter : MonoBehaviour
{
 public TextMeshProUGUI fpsDisplay;

 private float deltaTime = 0.0f;

 void Update()
 {
 deltaTime += (Time.unscaledDeltaTime - deltaTime) * 0.1f;
 float fps = 1.0f / deltaTime;
 Debug.Log(“FPS: “ + Mathf.Ceil(fps));
 fpsDisplay.text = Mathf.Ceil(fps).ToString() + “ FPS”;
 }
}

Code Snippet 3: FPS Counter script for real-time display of frame rate during gameplay

This script is attached to a UI element in Unity that shows the FPS count during gameplay. To
monitor VRAM usage, external tools like GPU-Z or NVIDIA-SMI are recommended, as Unity
does not provide direct tracking of VRAM usage. Unity’s Profiler tool (Window -> Analysis ->
Profiler) can also be used to observe overall memory consumption during the experiment.

Acta Graphica, 2024. (2) Scientific article

122

4.4. Image Quality Assessment Using SSIM

To assess the image quality between the fixed resolution (1440p) and dynamic resolution images,
the Structural Similarity Index Measure (SSIM) was used. SSIM is a perceptual metric that
evaluates the visual impact of changes in luminance, contrast, and structure between two images.
It is often used to determine the quality of an image in comparison to a reference image by
providing a score between 0 and 1, where 1 indicates perfect similarity [20].
In this study, SSIM was calculated between a fixed resolution image (1440p) and an image
rendered with dynamic resolution scaling (between 1080p and 1440p). The SSIM score obtained
was 0.89, indicating that the dynamic resolution image retains a high level of similarity to the
reference image. The slight decrease in image quality reflects the impact of scaling down the
resolution to optimize performance.
The difference map generated during the SSIM analysis (see Figure 3.) highlights the areas where
the most significant differences between the two images occur. These variations are primarily
in fine textures and edges, where resolution scaling impacts the visual sharpness. However, the
overall image retains a high degree of similarity to the original, demonstrating that dynamic
resolution can significantly improve performance with minimal loss in visual fidelity.
This result supports the hypothesis that dynamic resolution scaling can provide better performance
(FPS) with only a marginal decrease in perceived image quality, making it an effective technique
for real-time applications like VR and gaming.

Figure 3. The difference map shows the visual deviations between the fixed resolution image and the dy-
namically scaled image. The SSIM score of 0.89 indicates high similarity, with minor differences primar-

ily noticeable in textures and edges.

Acta Graphica, 2024. (2) Scientific article

123

4.5. Data Collection: FPS, VRAM, and Image Quality

The experiment is conducted by first running the scene at a fixed resolution of 1440p (Figure 4.).
During this phase, FPS, VRAM consumption (Figure 6.), and image quality are recorded. The
same data is collected for the dynamic resolution scenario, where the resolution fluctuates between
1080p and 1440p based on GPU performance (Figure 5.). The collected data will highlight the
differences in system performance and image quality between the two scenarios.

Figure 4. The Unity scene was rendered at a fixed resolution of 1440p, showcasing detailed textures,
lighting effects, and overall scene composition for performance testing.

4.5. Data Collection: FPS, VRAM, and Image Quality

The experiment is conducted by first running the scene at a fixed resolution of 1440p (Figure 4.).
During this phase, FPS, VRAM consumption (Figure 6.), and image quality are recorded. The
same data is collected for the dynamic resolution scenario, where the resolution fluctuates between
1080p and 1440p based on GPU performance (Figure 5.). The collected data will highlight the
differences in system performance and image quality between the two scenarios.

Acta Graphica, 2024. (2) Scientific article

124

Figure 5. The Unity scene rendered with dynamic resolution scaling, illustrating how the resolution ad-
justs between 1080p and 1440p to balance performance and visual quality.

Figure 6. Comparison of VRAM usage: on the top, dynamic resolution scaling (1080p to 1440p) shows
fluctuating memory consumption, while on the bottom, fixed resolution (1440p) maintains consistent

VRAM usage.

4.6. Analysis and Results Presentation

Once the data has been collected, the results are compiled into a table with columns for resolution,
FPS, VRAM usage, and image quality. This data is essential for comparing how dynamic resolution
scaling affects system performance and image quality relative to a fixed resolution. The following
table format is used:

Resolution FPS VRAM Usage (GB)
1440p 29 10
1440p 40 10
1440p 25 10
1440p 27 10
1440p 26 10
Dynamic 53 7
Dynamic 60 7
Dynamic 79 7
Dynamic 55 7

Table 3 Comparison of FPS and VRAM usage between fixed 1440p resolution and dynamic scaling, high-
lighting performance improvements with dynamic resolution

Acta Graphica, 2024. (2) Scientific article

125

4.7. Conclusion: Impact of Dynamic Resolution Scaling

Based on the data collected, the results show that dynamic resolution scaling significantly improves
system performance by increasing FPS and reducing VRAM consumption. The slight decrease in
image quality (as indicated by the SSIM score) is generally acceptable, especially in applications
where real-time performance, such as in gaming or VR, is critical. This experiment demonstrates
that dynamic resolution scaling can offer substantial performance gains with minimal impact on
visual fidelity, making it a valuable technique for optimizing real-time rendering applications.

5. Extended Analysis of Ray Tracing and Rasterization Techniques

To better understand the real-world application of ray tracing and rasterization, an additional
column is added to the comparative table. This column outlines specific scenarios where each
technique is most suitable, aiding readers in understanding when to apply one technique over the
other.

5.1. Comparative Table of Ray Tracing and Rasterization with Real-World Use
Cases

Metric Ray Tracing Rasterization Real-World Use Case
Image Quality High fidelity with real-

istic shadows, reflec-
tions, and refractions.
Handles complex light
interactions naturally.

Moderate quality. Uses
approximations for
shadows and reflections.
Suitable for less com-
plex light interactions.

Ray tracing is ideal for
film production (CGI),
architectural visualiza-
tion, and photorealistic
simulations.

Performance (FPS) Computationally expen-
sive, requiring signifi-
cant processing power.

Much faster, optimized
for real-time rendering,
commonly used in gam-
ing engines.

Rasterization excels
in real-time applica-
tions such as video
games and VR experi-
ences where high FPS is
crucial.

Real-Time Capability Limited in real-time
without heavy optimiza-
tions. Requires high-end
GPUs.

Ideal for real-time
applications due to its
speed and efficiency,
suitable for a wider
range of hardware.

Ray tracing can be
used in high-end games
with RTX hardware;
rasterization is standard
for mobile and console
games.

Memory Usage High memory consump-
tion due to large light
path data and calcula-
tions.

Lower memory usage,
simpler geometric data,
relies on approxima-
tions.

Ray tracing's memory
demand makes it suit-
able for architectural
renderings where image
accuracy is paramount.

Table 4 A detailed comparison of ray tracing and rasterization, illustrating distinctions in image quality,
performance, memory consumption, and hardware requirements, with specific real-world applications
tailored to each rendering technique.

Acta Graphica, 2024. (2) Scientific article

126

Metric Ray Tracing Rasterization Real-World Use Case
Lighting Calculation Accurate, physically

based simulation of
global illumination,
reflections, and indirect
lighting.

Approximate lighting
calculations based on
pre-baked solutions like
light maps.

Rasterization is used in
VR gaming where low
latency is needed, while
ray tracing is best for
realistic VFX.

Hardware Requirements Requires high-perfor-
mance hardware with
RT cores (e.g., NVIDIA
RTX, AMD RDNA2).

Can run on a wide range
of hardware, including
lower-end GPUs and
integrated graphics.

High-end gaming PCs
for ray tracing, mobile
and budget hardware for
rasterization.

As illustrated in table 4, ray tracing’s higher visual fidelity and precise light simulation make it
ideal for industries where photorealism is the priority, such as CGI in movies or architectural
visualizations. In contrast, rasterization’s speed and lower resource demands make it the preferred
option for real-time applications, such as video games or interactive simulations.

5.2. Analysis of Dynamic Resolution in Other Applications Beyond VR

While dynamic resolution scaling (DRS) is particularly beneficial in virtual reality (VR)
environments, its application can be extended to other industries that require real-time performance
and high image fidelity.

 1.Industrial simulations - in complex industrial simulations, where real-time tracking
 of machinery, production lines, or logistics is critical, dynamic resolution can help
 maintain high performance without sacrificing critical visual details. This ensures that
 important components are rendered clearly, while less crucial areas are downscaled to
 reduce computational load.
 2.Architectural visualizations - in architectural renderings, dynamic resolution can
 optimize system resources by adjusting resolution based on the viewer’s focus. For
 example, the primary focus, such as intricate building details, can be rendered in higher
 resolution, while peripheral views are dynamically downscaled. This allows for smooth
 navigation without compromising visual accuracy.

In these scenarios, dynamic resolution scaling demonstrates its ability to maintain performance
while still offering acceptable image quality. This approach optimizes resource allocation, making
it applicable across various real-time rendering tasks outside of VR.

5.3. Contribution to Process Improvement: Resolution and Performance

The main contribution of this study is the insight into how resolution scaling can significantly
improve performance with minimal loss in visual fidelity. By demonstrating how dynamic
resolution scaling optimizes rendering processes in real-time applications, this research provides
a framework for further exploration into resource management.
This optimization process can serve as a reference for future studies that focus on real-time
rendering improvements in VR, gaming, architectural visualization, and industrial simulations.
Future research can explore advanced dynamic resolution techniques to further enhance
performance without compromising critical visual elements.

5.4. Potential Limitations of Dynamic Resolution Scaling

Despite its benefits, dynamic resolution scaling does present limitations, especially in cases where
extreme visual detail is required. For instance, in medical imaging or precision component design,
downscaling might obscure critical details, affecting the accuracy of the simulation or rendering.
Additionally, in certain high-detail scenes, downscaling resolution too aggressively could
negatively impact the user experience. In these scenarios, careful calibration of the resolution
scaling parameters is essential to ensure that the trade-off between performance and quality
remains acceptable.

5.5. Technical Discussion: Comparison of Ray Tracing Algorithms

Expanding the technical section of the thesis, we can include a comparison of different ray tracing
algorithms to explore their impact on performance in real-time applications.

 •Path Tracing - this algorithm accurately simulates the paths of light rays as they bounce
 around a scene, offering superior visual realism but at a high computational cost. Path
 racing is often used in movie production and CGI where photorealism is more important
 than real-time performance.
 •Whitted-Style Ray Tracing - this simpler form of ray tracing focuses on direct
 reflections and refractions, making it faster than path tracing. While it provides lower
 fidelity, it is better suited for interactive graphics and games where performance is a
 critical factor.

In the context of VR, path tracing offers unmatched realism but requires significantly more
computational power, while Whitted-style ray tracing can achieve acceptable visual quality with
better performance.

6. Conclusion

This thesis has explored the application and implementation of advanced rendering techniques,
specifically ray tracing, in creating photorealistic scenes and integrating them into virtual reality
(VR) environments. Ray tracing, with its ability to accurately simulate light-object interactions,
has demonstrated its capacity to significantly enhance visual fidelity by providing realistic
effects such as shadows, reflections, and refractions. However, as shown in the practical part,
these improvements come with considerable challenges in real-time applications due to the high
computational demands of ray tracing.
Through the development and implementation of key elements such as ray-object intersection
algorithms and global illumination within the Unity Engine, this research has shown that while ray
tracing can achieve high-quality visuals, the performance trade-offs in VR environments can be
substantial. The need for real-time rendering in VR applications imposes significant performance
constraints, particularly in maintaining a high frame rate to ensure user comfort. Optimizations
such as adaptive rendering, level of detail (LOD), and dynamic resolution scaling were explored
as potential solutions to balance performance and visual quality.
In the experimental section, dynamic resolution scaling was examined as an effective method for
improving performance without severely compromising image quality. By adjusting resolution
based on system load, it was demonstrated that frame rates could be significantly improved while
maintaining acceptable visual fidelity, as measured by the Structural Similarity Index Measure
(SSIM). While the image quality slightly decreased, the gains in FPS and reduced VRAM

Acta Graphica, 2024. (2) Scientific article

127

consumption made dynamic resolution scaling an appealing approach for real-time applications,
particularly in gaming and VR.
In summary, this study concludes that while ray tracing represents the pinnacle of visual realism
in computer graphics, its integration into real-time VR systems is limited by current hardware
constraints. Dynamic resolution scaling presents a practical solution for mitigating performance
issues, offering a balance between visual quality and system efficiency. The findings of this research
suggest that continued advancements in GPU technology and further optimizations in rendering
algorithms are necessary to fully realize the potential of ray tracing in real-time VR applications.
Future work could explore the integration of hybrid approaches, where ray tracing is selectively
applied to critical elements of a scene, further improving performance while maintaining high
visual fidelity.

7. References

[1] Shirley, P., & Marschner, S. (2009). Fundamentals of Computer Graphics. A K Peters/
CRC Press.
[2] Stark, M.M. (2021). Ray Tracing Gems II: High-Quality and Real-Time Rendering with
DXR and Other APIs. Apress.
[3] Laine, S., Karras, T., & Aila, T. (2020). Megakernels Considered Harmful: Wavefront
Path Tracing on GPUs. ACM Transactions on Graphics (TOG), 39(4), pp. 1-14. https://doi.
org/10.1145/3386569.3392378.
[4] Pohl, D., Nilsson, J., & Sutherland, J. (2019). Ray Tracing for Virtual Reality: A Practical
Approach. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR). https://doi.
org/10.1109/VR.2019.8798187.
[5] Akenine-Möller, T., Haines, E., & Hoffman, N. (2018). Real-Time Rendering. CRC
Press.
[6] Cook, R.L., Porter, T., & Carpenter, L. (1984). Distributed Ray Tracing, ACM SIGGRAPH
Computer Graphics, 18(3), pp. 137-145. https://doi.org/10.1145/964965.808590.
[7] Meister, J., (2021). A Survey on Bounding Volume Hierarchies for Ray Tracing, Computer
Graphics Forum. Wiley Online Library.
[8] Stengel, M., Eisemann, E., & Magnor, M. (2016). Adaptive Sampling for Real-Time
Rendering. IEEE Transactions on Visualization and Computer Graphics, 22(8), 2033-2045.
[9] Luebke, D., Humphreys, G., & Harris, M. (2006). Level of Detail for Large-Scale Real-
Time Rendering. IEEE Visualization and Computer Graphics, 12(5), 5-10.
[10] NVIDIA Corporation, (2020). Real-Time Ray Tracing Technology Overview.
[11] Glassner, Andrew S. (1989). An Introduction to Ray Tracing. Academic Press.
[12] Phong, Bui Tuong. (1975). Illumination for Computer Generated Pictures. Communications
of the ACM.
[13] Doe, M. and Emily A., (2024). Real-Time Rendering Optimization Techniques, Journal
of Computer Graphics and Applications.
[14] Müller T., Rousselle F., Novák J., Keller A., (2021.) Real-time neural radiance caching
for path tracing, ACM Transactions on Graphics (TOG), Volume 40, Issue 4, https://doi.
org/10.1145/3450626.3459812
[15] Smith, J. and Doe, J., (2023). Hybrid GPU Rasterized and Ray Traced Rendering Pipeline,
SpringerLink.
[16] Koulaxidis G and Xinogalos S., (2022). Improving Mobile Game Performance with Basic
Optimization Techniques in Unity, MDPI, Modelling, 3(2), 201-223; https://doi.org/10.3390/
modelling3020014

Acta Graphica, 2024. (2) Scientific article

128

[17] Blinn, James F. (1977). Models of Light Reflection for Computer Synthesized Pictures.
ACM SIGGRAPH.
[18] Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann.
[19] Heitz, E., Hill, S., Neubelt, D., & McGuire, M. (2020). Real-Time Ray Tracing and
Rasterization. Journal of Computer Graphics Techniques (JCGT), 9(3), pp.31-45. Available at:
https://jcgt.org/published/0010/03/02/.
[20] Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. (2004). Image Quality Assessment:
From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4),
pp.600-612. https://doi.org/10.1109/TIP.2003.819861.
[21] Duflou, J.R., Vermeulen, P., Cattrysse, D., & Lefeber, D., (2013). Monitoring System
Performance in Unity with Custom FPS Counters and Profiling Tools, Computer Graphics &
Applications, 33(6), pp.12-16. https://doi.org/10.1109/MCG.2013.86.

Acta Graphica, 2024. (2) Scientific article

129

